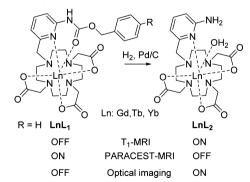


Prototypes of Lanthanide(III) Agents Responsive to Enzymatic Activities in Three Complementary Imaging Modalities: Visible/Near-Infrared Luminescence, PARACEST-, and T₁-MRI

Jiefang He,[†] Célia S. Bonnet,[‡] Svetlana V. Eliseeva,[‡] Sara Lacerda,[‡] Thomas Chauvin,[‡] Pascal Retailleau,[†] Frederic Szeremeta,[‡] Bernard Badet,[†] Stéphane Petoud,^{*,‡} Éva Tóth,^{*,‡} and Philippe Durand^{*,†}

[†]Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av.de la Terrasse, 91198 Gif-sur-Yvette, France

[‡]Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, F-45071 Orléans 2, France


Supporting Information

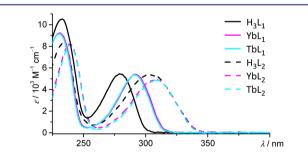
ABSTRACT: We report first prototypes of responsive lanthanide(III) complexes that can be monitored independently in three complementary imaging modalities. Through the appropriate choice of lanthanide(III) cations, the same reactive ligand can be used to form complexes providing detection by (i) visible (Tb³⁺) and near-infrared (Yb³⁺) luminescence, (ii) PARACEST- (Tb³⁺, Yb³⁺), or (iii) T₁-weighted (Gd³⁺) MRI. The use of lanthanide(III) ions of different natures for these imaging modalities induces only a minor change in the structure of complexes that are therefore expected to have a single biodistribution and cytotoxicity.

olecular imaging aims at visualizing biological objects or Diochemical events at physiological, cellular, and molecular levels within living cells, tissues or whole organisms for research, diagnostics, or personalized medicine purposes.¹ It relies on selective and/or responsive imaging agents optimized for a specific imaging modality,² i.e., magnetic resonance imaging (MRI),³ optical imaging,⁴ ultrasonography,⁵ tomography,⁶ etc. As each modality has its advantages and limitations, additional and less ambiguous information becomes accessible by sequentially or simultaneously combining several complementary techniques.⁷ The broad diversity of molecular events requires innovative solutions for their monitoring. Among them, enzymatic activities are of interest since their dysregulation is involved in many diseases. Smart imaging agents endowed with a responsive mechanism are required to detect these activities.⁸ Despite long-term efforts, progress in in vivo responsive imaging remains limited.9 An appealing strategy to accelerate the development of molecular imaging relies in the design of responsive probes suitable for different detection techniques using versatile molecular platforms, thus optimizing both time and efforts for synthetic work. Such platforms must combine a trigger, which can be adapted to a broad variety of molecular events, and a reporter moiety that can be detected by several imaging modalities.¹⁰ We previously designed a platform suitable for detection of enzymatic activities by PARACEST-MRI¹¹ in which an enzyme-specific trigger was coupled to a Ln³⁺-based reporter using a self-immolative spacer. We have demonstrated that the action of the selected enzyme resulted in elimination of the spacer associated with a change in MRI signal. In the present work, we set the basis of smart imaging probes, which, in addition to PARACEST-MRI, allow the detection of enzymatic event by visible and near-infrared (NIR) luminescence and by T₁-MRI. Bioimaging in the NIR provides a major advantage of enhanced detection sensitivity due to the limited autofluorescence of biological tissues in this energy window.¹² Several NIR-emitting Ln³⁺ ions¹³ proved attractive for microscopy imaging of living cells.¹⁴ Moreover, Ln³⁺-based imaging agents possess several complementary advantages over organic fluorophores, such as sharp emission bands (for spectral discrimination) and strong resistance to photobleaching.¹⁵

As Ln^{3+} cations possess versatile magnetic and optical properties while having similar reactivities,¹⁶ we have designed a molecular platform that can be made responsive and that is compatible with the complementary imaging modalities previously described (Scheme 1). Ligand H_3L_1 is a DO3A derivative substituted by a pyridylmethyl moiety. The pyridine has multiple roles here: (i) to provide a donor atom for stable Ln^{3+} complexation,¹⁷ (ii) to act as a sensitizer for Ln^{3+}

Scheme 1. Ln^{3+} Complexes as Prototypes of Enzyme Responsive Probes for Detection by Visible (Tb^{3+}) or Near-Infrared (Yb^{3+}) Luminescence, by T₁-Weighted- (Gd^{3+}) , or by PARACEST- (Yb^{3+}, Tb^{3+}) MRI^{*a*}

^{*a*}The R in **LnL**₁ can be replaced by an appropriate substrate to afford enzyme sensitivity and specificity.


Received: November 23, 2015 Published: January 4, 2016

Journal of the American Chemical Society

luminescence (antenna effect),¹⁸ and (iii) to introduce additional functionalities, in particular a self-immolative benzyl carbamate that will make this reporter responsive to molecular events such as enzymatic cleavage, as previously reported.¹¹ The enzymatic cleavage of such probe and the elimination of the self-immolative arm will induce the transformation of the carbamate into an amine¹⁹ with subsequent changes in the coordination environment of the Ln³⁺ ion and modification of its hydration state. We hypothesized that such switching would be detectable by both visible and NIR luminescence as well as by T1- and PARACEST-MRI depending on the nature of the Ln³⁺. We note that PARACEST and T₁ agents cannot be used simultaneously since the T₁ agent destroys the CEST signal; however, sequential imaging of the same animal in the two techniques can ascertain the findings and provide more accurate information. The luminescence capability provides higher sensitivity and resolution at the cellular level giving complementary information. LnL₁ are synthetically accessible model complexes of the responsive probes that will bear the self-immolative benzyl carbamate linker and an enzyme-specific substrate (R). For instance, β -D-galactopyranoside can be used as a substrate for the detection of β -galactosidase. LnL₂ complexes are the end product of the enzymatic cleavage of LnL₁.

In order to test this concept, we synthesized and investigated Gd^{3+} , Yb^{3+} , and Tb^{3+} complexes of H_3L_1 and H_3L_2 (Scheme 1, Supporting Information). Synthesis of H_3L_1 was achieved in eight steps with a 13% overall yield starting from commercially available 2-bromo-6-amino pyridine. LnL_1 complexes were formed at room temperature in a pH-controlled aqueous solution upon addition of the corresponding $LnCl_3$ to the ligand. Their hydrogenolysis over palladium-charcoal in water led to the formation of the corresponding LnL_2 chelates.


Absorption spectra of the ligands H_3L_1 and H_3L_2 (Figure 1) display broad bands in the UV range centered at 232, 279, and

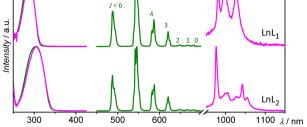
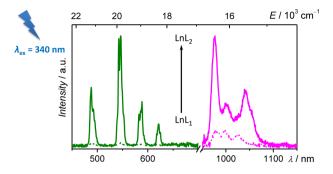


Figure 1. Absorption spectra of H_3L_1 and H_3L_2 and their corresponding Yb³⁺ and Tb³⁺ complexes (100 μ M in HEPES buffer, pH 7.4, room temperature).

234, and 303 nm, respectively, due to $\pi \rightarrow \pi^*$ transitions. Upon formation of the Tb³⁺ or Yb³⁺ complexes, the low-energy absorption bands undergo a bathochromic shift of 5–10 nm. It is important to note a pronounced red-shift (25 nm, i.e., 320 vs 345 nm) of the cutoff wavelengths of the absorption bands upon conversion of LnL₁ to LnL₂, which can be used to our advantage in the design of responsive probes.

Excitation spectra recorded upon monitoring of the main transitions of Tb^{3+} and Yb^{3+} ions at 545 and 980 nm, respectively, match the shapes of the absorption ones, indicating that the sensitization of Ln^{3+} ions is occurring through the organic ligands (Figure 2, left). Upon excitation into ligand-centered absorption bands at 290–310 nm, **TbL** and **YbL** complexes exhibit characteristic emission in the visible or the NIR range due to

20


Figure 2. Left: excitation spectra of LnL₁ (top) and LnL₂ (bottom) (λ_{em} = 545 nm (Tb³⁺) and 980 nm (Yb³⁺)). Center and right: emission spectra of LnL₁ (top, λ_{ex} = 290 nm) and LnL₂ (bottom, λ_{ex} = 310 nm); 100 μ M in HEPES buffer, pH 7.4, room temperature. Ln = Tb³⁺ (green traces), Yb³⁺ (magenta traces).

 ${}^{5}D_{4} \rightarrow {}^{7}F_{J} (J = 6-0) \text{ or } {}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transitions, respectively (Figure 2, center and right). The differences in Stark splitting of the f-f transitions, which are more pronounced in the case of Yb³⁺ complexes, reflect changes in coordination environment around the Ln³⁺ ion.

Luminescence lifetimes and quantum yields have been determined in H_2O and D_2O solutions (Table S1). In H_2O , quantum yields and luminescence lifetime values of TbL1 are larger than those observed for TbL₂ (37(1) vs 22.2(2)% and 2.78(1) vs 1.94(4) ms) but are similar when placed in D₂O (\sim 36% and 3 ms), reflecting the role of O–H vibrations in the latter complex. Indeed, comparison of τ_{obs} in H₂O and D₂O using phenomenological equations²⁰ confirms that the Tb³⁺ ion is monohydrated in TbL₂, while no water molecule is coordinated to Tb^{3+} in TbL_1 . For Yb^{3+} complexes, the situation is different due to the intrinsically higher impact of vibrations on the nonradiative quenching of luminescence.^{13,21} Quantum yield and lifetime values are lower even in D₂O by 1.4–1.5 times for YbL₂ compared to **YbL**₁ (0.181(6) vs 0.261(5)% and 5.02(2) vs 7.7(2) μ s). This result can be explained by a stronger nonradiative quenching contribution of N-H vibrations in YbL₂. Moreover, in H₂O, YbL₂ exhibits a biexponential luminescence decay with lifetimes of 1.44 and 0.77 μ s. We can hypothesize the presence of an equilibrium between mono- and nonhydrated species in this case.

To analyze the abilities of the Tb^{3+} and Yb^{3+} complexes to operate as luminescence responsive probes upon elimination of the benzyl carbamate spacer, emission spectra of LnL_1 and LnL_2 were measured under ligand excitation at 340 nm (Figure 3). The choice of the excitation wavelength was dictated by the differences in absorption for the two series of complexes (Figure 1). The integrated emission intensities of TbL_2 and YbL_2 were found to be 20- and 6.5-times higher, respectively, than that of the corresponding LnL_1 complexes. Thus, conversion of visible (Tb^{3+}) or NIR (Yb^{3+}) emitting probes bearing the enzymespecific substrate to LnL_2 complexes will lead to a turn-on luminescence response, which will be the first example of a NIRemitting Ln^{3+} complex for monitoring enzymatic reactions.

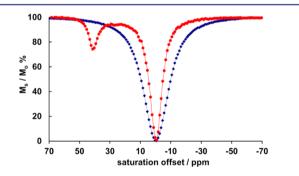
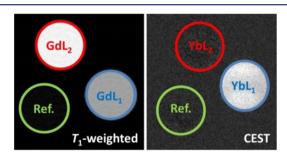

To assess the potentiality of the Gd^{3+} analogues as enzyme responsive T₁-MRI agents, longitudinal water proton relaxivities, r_1 , were determined for GdL_1 and GdL_2 (0–80 MHz, 25 and 37 °C). At all fields and both temperatures, the r_1 values are considerably (90–100%) larger for GdL_2 than for GdL_1 (Supporting Information; $r_1 = 1.91$ and 3.77 mM⁻¹ s⁻¹ for GdL_1 and GdL_2 , respectively; 60 MHz, 25 °C). This relaxivity

Figure 3. Demonstration of off–on luminescence switch from LnL_1 (dotted line) to LnL_2 (plain line) under excitation at 340 nm (100 μ M in HEPES buffer, pH 7.4, room temperature). Ln = Tb³⁺ (green traces), Yb³⁺ (magenta traces).

difference should lead to a remarkable turn-on response in T_1 -MRI upon enzymatic activation of the probe. The low relaxivity of GdL_1 points to a nonhydrated state, in accordance with the crystal structure (Figure S8) and the luminescence lifetimes (see above), while the higher relaxivity of GdL_2 is consistent with a monohydration of the Ln^{3+} .

CEST spectra were recorded for TbL₁, TbL₂ and YbL₁, YbL₂ complexes in aqueous solution by applying a 3 s selective saturation at 25 μ T in 1 ppm increments from -90 to +90 ppm (Yb³⁺) or -500 to +400 ppm (Tb³⁺) and plotted as normalized water signal intensity (M_z/M_0 %) against frequency offset (ppm). A single CEST effect (~25%) was observed at +44 ppm for YbL₁, while two CEST peaks appear at -105 and -115 ppm for TbL₁ (Figure S2), which were assigned to carbamate protons. While amide protons are a common source of PARACEST in Ln³⁺ complexes, this is the first example of carbamate protons that generate PARACEST effect. In contrast, no CEST is produced by LnL₂ analogues (Figures 4 and S2). Thus, the conversion of


Figure 4. CEST spectra of **YbL**₁ (red) and **YbL**₂ (blue); 500 MHz, pH 7.5, 37 °C, irradiation power 25 μ T, saturation time 3 s, [**YbLi**]_{i=1,2} = 20 mM.

the carbamate complexes to the amine analogues upon enzymatic reaction will lead to a turn-off PARACEST response. For **TbL**₁, the two CEST peaks likely belong to two isomers, as it was reported for YbHPDO3A.²² Indeed, Ln^{3+} complexes of cyclen-based ligands may exist as two diastereomeric pairs,²³ which are observable in the ¹H NMR spectrum of **TbL**₁ (Figure S23). The two CEST signals belonging to the same molecule can be later exploited for a ratiometric calibration that reports on enzyme activities irrespective of probe concentration.

The exchange rate of the mobile carbamate protons has been assessed by QUEST measurements for **YbL**₁ ($k_{ex} = 6100 \pm 100$ s⁻¹) and by the omega plot method for the two isomers of **TbL**₁ ($k_{ex} = 4300 \pm 300$ s⁻¹ at -115 ppm and 5000 ± 400 s⁻¹ at -105

ppm; pH 7.4, 25 °C). They are similar or slightly higher compared to values reported for Ln^{3+} tetraamide DOTA-derivatives with PARACEST effect.²⁴

To further demonstrate the utility of our platform system, we have acquired T_1 -weighted and CEST MR images of the Gd³⁺ and Yb³⁺ complexes, respectively (Figure 5). These images are in

Figure 5. T₁-weighted and CEST MR images of phantoms containing complexes of H_3L_1 and H_3L_2 with Gd³⁺ (2.86 mM, pH 7.8) and Yb³⁺ (20.8 mM; pH 7.0). T₁-weighted images were acquired at 7 T using spin echo sequence with TE = 11.0 ms and TR = 200 ms. CEST difference images were obtained by subtracting on-resonance (+44 ppm) from off-resonance (-44 ppm) images at 9.4 T (irradiating pulse of 25 μ T, 4 s).

accordance with the relaxivities of GdL_1 and GdL_2 and with the CEST effect observed for YbL_1 . They evidence the potential of obtaining MRI detectable responses upon the transformation of the carbamate to the corresponding amine derivative complexes, representing off—on or on—off responses in T_1 - or CEST-MRI, respectively.

In conclusion, we have designed, synthesized and characterized the physicochemical properties of complexes formed with a ligand system that can be tuned for specific detection of a wide variety of enzymatic activities using complementary detection modalities including visible and NIR optical imaging and T₁- or PARACEST-MRI depending on the nature of the Ln³⁺ ion. A common triggering molecular mechanism is used for the operation of different imaging modalities. LnL₁ and LnL₂ complexes described here model the states prior- and postenzymatic cleavage occurring in these probes.

This is the first example where a single molecular system can be used as a responsive imaging agent in three different independent modalities. In these compounds, we have evidenced a remarkable variation in relaxivity (Gd^{3+}), in PARACEST as well as in luminescence properties (Tb^{3+} and Yb^{3+}), which open the way toward multimodal enzyme detection by using a single ligand.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b12084.

Synthetic procedures, compounds characterization, ¹H NMR, NMRD, CEST spectra, photophysical measurements, ORTEP plot, and HPLC analyses (PDF) Crystallographic information (CIF)

AUTHOR INFORMATION

Corresponding Authors

*philippe.durand@cnrs.fr *eva.jakabtoth@cnrs.fr *stephane.petoud@inserm.fr

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by ANR (ENZYMAGE), La Ligue Contre le Cancer and carried out within European COST actions TD1004 and CM1006, and Cancéropôle Grand Ouest. S.P. acknowledges support from INSERM and J.H. acknowledges the French research ministry for her grant.

REFERENCES

(1) (a) Jung, K.-H.; Lee, K.-H. J. Pathol. Transl. Med. 2015, 49, 5.
(b) Hussain, T.; Nguyen, Q. T. Adv. Drug Delivery Rev. 2014, 66, 90.
(c) Molecular Imaging: Principles and Practice; Weissleder, R.; Ross, B. D.; Rehemtulla, A.; Gambhir, S. S., Eds.; People's Medical Publishing House: Shelton, 2010.

(2) The Chemistry of Molecular Imaging; Long, N.J.; Wong, W.-T., Eds.; Wiley: New York, 2015.

(3) (a) Hingorani, D. V.; Bernstein, A. S.; Pagel, M. D. Contrast Media Mol. Imaging 2015, 10, 245. (b) Boros, E.; Gale, E. M.; Caravan, P. Dalton Trans. 2015, 44, 4804. (c) Bonnet, C. S.; Tei, L.; Botta, M.; Toth, E. In Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd ed.; Merbach, A., Helm, L., Tóth, É., Eds.; John Wiley & Sons Ltd., 2013; p 343. (d) Terreno, E.; Castelli, D. D.; Aime, S. In Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2nd ed.; Merbach, A., Helm, L., Tóth, É., Eds.; John Wiley & Sons Ltd., 2013; p 387.

(4) (a) Lou, Z.; Li, P.; Han, K. Acc. Chem. Res. 2015, 48, 1358. (b) Kobayashi, H.; Choyke, P. L. Acc. Chem. Res. 2011, 44, 83.

(5) van Rooij, T.; Daeichin, V.; Skachkov, I.; de Jong, N.; Kooiman, K. Int. J. Hyperthermia **2015**, *31*, 90.

(6) Van de Bittner, G. C.; Ricq, E. L.; Hooker, J. M. Acc. Chem. Res. 2014, 47, 3127.

(7) (a) Seibold, U.; Wängler, B.; Schirrmacher, R.; Wängler, C. *BioMed Res. Int.* **2014**, 2014, 13 (Article ID 153741). (b) Chiang, S. *Frontiers in Neurology* **2015**, *6*, 74. (c) Kobayashi, H.; Longmire, M. R.; Ogawa, M.; Choyke, P. L. *Chem. Soc. Rev.* **2011**, *40*, 4626.

(8) (a) Srivastava, A. K.; Kadayakkara, D. K.; Bar-Shir, A.; Gilad, A. A.; McMahon, M. T.; Bulte, J. W. M. *Dis. Models & Mech.* 2015, *8*, 323.
(b) Hingorani, D. V.; Yoo, B.; Bernstein, A. S.; Pagel, M. D. *Chem. - Eur. J.* 2014, *20*, 9840. (c) Razgulin, A.; Ma, N.; Rao, J. *Chem. Soc. Rev.* 2011, 40, 4186.

(9) (a) Reilly, R. M.; Lam, K.; Chan, C.; Levine, M. Bioconjugate Chem. 2015, 26, 625. (b) Pierre, V.; Allen, M.; Caravan, P. JBIC, J. Biol. Inorg. Chem. 2014, 19, 127. (c) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J. Chem. Rev. 2014, 114, 4496. (d) Wolfbeis, O. S. Angew. Chem., Int. Ed. 2013, 52, 9864.

(10) (a) Chen, K.; Chen, X. Y. Curr. Top. Med. Chem. 2010, 10, 1227.
(b) Pershagen, E.; Borbas, K. E. Angew. Chem., Int. Ed. 2015, 54, 1787.

(11) Chauvin, T.; Durand, P.; Bernier, M.; Meudal, H.; Doan, B. T.; Noury, F.; Badet, B.; Beloeil, J. C.; Toth, E. *Angew. Chem., Int. Ed.* **2008**, 47, 4370.

(12) Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710.

(13) Comby, S.; Bünzli, J.-C. G. In *Handbook on the Physics and Chemistry of Rare Earths*; Gschneidner, K. A., Jr., Bünzli, J.-C. G., Pecharsky, V. K., Eds.; Elsevier Science B.V.: Amsterdam, 2007; Vol. 37, Ch. 235, p 217.

(14) (a) Foucault-Collet, A.; Shade, C. M.; Nazarenko, I.; Petoud, S.; Eliseeva, S. V. *Angew. Chem., Int. Ed.* **2014**, *53*, 2927. (b) Foucault-Collet, A.; Gogick, K. A.; White, K. A.; Villette, S.; Pallier, A.; Collet, G.; Kieda, C.; Li, T.; Geib, S. J.; Rosi, N. L.; Petoud, S. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110*, 17199.

(15) (a) Bünzli, J.-C. G.; Eliseeva, S. V. In *Comprehensive Inorganic Chemistry II*; Yam, V. W.-W., Ed.; Elsevier B.V.: Amsterdam, 2013; Vol. 8, p 339. (b) Trivedi, E. R.; Eliseeva, S. V.; Jankolovits, J.; Olmstead, M. M.; Petoud, S.; Pecoraro, V. L. J. Am. Chem. Soc. **2014**, *136*, 1526.

(16) Amoroso, A. J.; Pope, S. J. A. Chem. Soc. Rev. 2015, 44, 4723.

(17) Hancock, R. D. Chem. Soc. Rev. 2013, 42, 1500.

- (18) (a) de Bettencourt-Dias, A.; Barber, P. S.; Viswanathan, S. Coord. Chem. Rev. 2014, 273–274, 165. (b) Uh, H.; Petoud, S. C. R. Chim. 2010, 13, 668.
- (19) Alouane, A.; Labruère, R.; Le Saux, T.; Schmidt, F.; Jullien, L. Angew. Chem., Int. Ed. 2015, 54, 7492.
- (20) Beeby, A.; Clarkson, I. M.; Dickins, R. S.; Faulkner, S.; Parker, D.; Royle, L.; de Sousa, A. S.; Williams, J. A. G.; Woods, M. J. Chem. Soc., Perkin Trans. 2 **1999**, 493.
- (21) Bünzli, J.-C. G.; Eliseeva, S. V. J. Rare Earths 2010, 28, 824.
- (22) Delli Castelli, D.; Terreno, E.; Aime, S. Angew. Chem., Int. Ed. 2011, 50, 1798.
- (23) Platas-Iglesias, C. Eur. J. Inorg. Chem. 2012, 2023.
- (24) Zhang, S. R.; Michaudet, L.; Burgess, S.; Sherry, A. D. Angew. Chem., Int. Ed. 2002, 41, 1919.